Higher memory effects

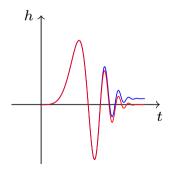
Alexander Grant

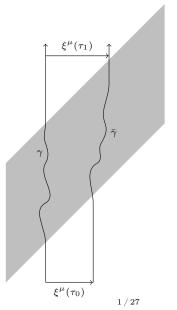
University of Southampton

New Frontiers in Strong Gravity III July 16th, 2024

Memory effect

- Gravitational wave (displacement) memory: change in separation of initially comoving, freely falling observers [Zel'dovich & Polnarev, 1974]
- Appears as DC offset for a GW detector
 fundamentally different type of signal!





Origin of the memory

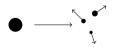
▶ Quadrupole formula:

$$h_{ij} = \frac{2\ddot{Q}_{ij}}{r} + O(1/r^2) \implies \text{when is } \Delta\ddot{Q}_{ij} \neq 0?$$

▶ $Q_{ij} \sim m x_i x_j \& \ddot{x}_i = 0$ at late times, so

$$\Delta \ddot{Q}_{ij} \sim m\Delta \left[v_i v_j \right] \implies \text{ when } v_i \text{ changes!}$$

▶ Note: applies to *unbound systems* w/ particles flying off to infinity



Memories and "strong gravity"

- Bound systems: "particles flying off to infinity" are gravitational waves
- ► Source is *quadratic* in the field:

$$T_{\alpha\beta} \sim \langle \dot{h}_{\alpha\gamma} \dot{h}^{\gamma}{}_{\beta} \rangle \implies \Delta h(u) \sim r \int_{-\infty}^{u} |\dot{h}|^2$$

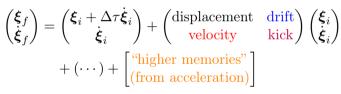
(with $h \equiv h_+ - ih_{\times} \sim 1/r$)

Probes nonlinearity in *propagation* regime

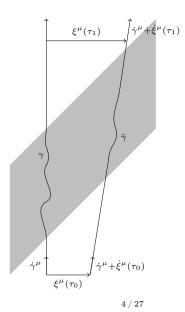
[Christodoulou, 1991], [Blanchet & Damour, 1992 (1990)], [Thorne, 1992]

Higher memories

- ► Two "simple" generalizations:
 - ▶ Relax assumptions: initially comoving or freely falling
 - Consider other properties (e.g., final relative velocity)
- Additional, memory-like effects (drift = spin + c.o.m.):



- Appear as different types of non-oscillatory GW features
- Probe "subleading" nonlinearities in propagation of gravitational waves



Outline

I. Definition from observables

II. Asymptotically flat spacetimes

III. Applications to binary inspirals

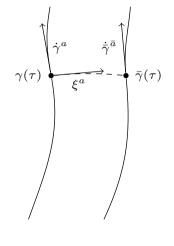
IV. Conclusions and future work

Not in this talk: detectability (except one slide), symmetries, soft theorems...

Geodesic deviation

- ▶ Two observers, following γ and $\bar{\gamma}$, w/ four-velocities $\dot{\gamma}^a$ and $\dot{\bar{\gamma}}^{\bar{a}}$
- Separation vector ξ^a tangent to unique geodesic between $\gamma(\tau)$ and $\bar{\gamma}(\tau)$
- ► Geodesic deviation equation:

$$\ddot{\xi}^{a} = -\underbrace{R^{a}_{cbd}\dot{\gamma}^{c}\dot{\gamma}^{d}}_{\equiv R^{a}_{\dot{\gamma}b\dot{\gamma}}}\xi^{b} + O(\boldsymbol{\xi}, \dot{\boldsymbol{\xi}})^{2}$$



For an excellent review, see [Vines, 2014]

General solution

- Recall: cannot add/subtract tensors at different points
 ⇒ cannot solve *tensor* ODEs
- ▶ Parallel-transported tetrad $\{e_{\alpha}\} \implies scalar \text{ ODE}:$

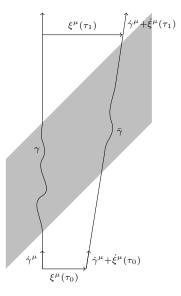
$$\frac{\mathrm{D}\boldsymbol{e}_{\alpha}}{\mathrm{d}\tau} = 0 \implies \ddot{\xi}^{\alpha}(\tau) = -R^{\alpha}{}_{\dot{\gamma}\beta\dot{\gamma}}(\tau)\xi^{\beta}(\tau) + O(\boldsymbol{\xi}, \dot{\boldsymbol{\xi}})^{2}$$

► General solution (linear order):

$$\xi^{\mu}(\tau') = A^{\mu}{}_{\nu}(\tau',\tau)\xi^{\nu}(\tau) + B^{\mu}{}_{\nu}(\tau',\tau)\dot{\xi}^{\nu}(\tau)$$

where $\boldsymbol{A}, \boldsymbol{B}$ solve (w/ appropriate BC's)

$$\partial_{\tau'}^2 U^{\mu}{}_{\nu}(\tau',\tau) = -R^{\mu}{}_{\dot{\gamma}\rho\dot{\gamma}}(\tau')U^{\rho}{}_{\nu}(\tau',\tau)$$



"Geodesic" memory effects

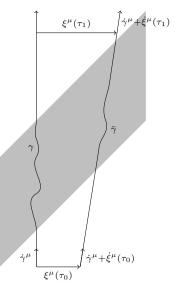
▶ Matrix form of solution:

$$\begin{bmatrix} \boldsymbol{\xi}(\tau') \\ \dot{\boldsymbol{\xi}}(\tau') \end{bmatrix} = \begin{bmatrix} \boldsymbol{A}(\tau',\tau) & \boldsymbol{B}(\tau',\tau) \\ \partial_{\tau'}\boldsymbol{A}(\tau',\tau) & \partial_{\tau'}\boldsymbol{B}(\tau',\tau) \end{bmatrix} \begin{bmatrix} \boldsymbol{\xi}(\tau) \\ \dot{\boldsymbol{\xi}}(\tau) \end{bmatrix}$$

► Comparing to memory effects:

$$\begin{pmatrix} \text{displacement } drift \\ \text{velocity } kick \end{pmatrix} = \begin{pmatrix} \boldsymbol{\Delta} \boldsymbol{A} & \boldsymbol{\Delta} \boldsymbol{B} \\ \partial_{\tau'} \boldsymbol{\Delta} \boldsymbol{A} & \partial_{\tau'} \boldsymbol{\Delta} \boldsymbol{B} \end{pmatrix}$$

$$\text{where } \begin{cases} \boldsymbol{\Delta} \boldsymbol{A}(\tau', \tau) = \boldsymbol{A}(\tau', \tau) - \mathbb{I}, \\ \boldsymbol{\Delta} \boldsymbol{B}(\tau', \tau) = \boldsymbol{B}(\tau', \tau) - \Delta \tau \mathbb{I} \end{cases}$$

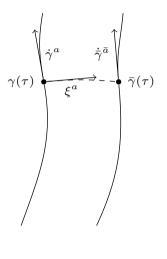


The addition of acceleration: "Non-geodesic" deviation

▶ If $\bar{\gamma}$ accelerated, geodesic deviation modified:

 $\ddot{\xi}^{a} = -R^{a}{}_{\dot{\gamma}b\dot{\gamma}}\xi^{b} + \underbrace{g^{a}{}_{\bar{a}}}_{\text{parallel transport map}} \ddot{\overline{\gamma}}^{\bar{a}} + O(\boldsymbol{\xi}, \dot{\boldsymbol{\xi}}, \boldsymbol{a})^{2},$

Solution on our tetrad (linear order):



Curve deviation

▶ Part of solution is an uninteresting, "kinematic" piece:

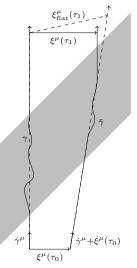
$$\ddot{\xi}^{\alpha}_{\text{flat}}(\tau) = a^{\alpha}(\tau) \implies \begin{cases} \xi^{\alpha}_{\text{flat}}(\tau') = \xi^{\alpha}(\tau) + (\tau' - \tau)\dot{\xi}^{\alpha}(\tau) \\ + \int_{\tau}^{\tau'} \mathrm{d}\tau''(\tau' - \tau'')a^{\alpha}(\tau'') \end{cases}$$

▶ Subtracting off yields *curve deviation* observable:

$$\Delta \xi^{\alpha}(\tau',\tau) \equiv \xi^{\alpha}(\tau') - \xi^{\alpha}_{\text{flat}}(\tau')$$

$$= \overbrace{\Delta A^{\alpha}{}_{\beta}(\tau',\tau)}^{\text{displacement}} \xi^{\beta}(\tau) + \overbrace{\Delta B^{\alpha}{}_{\beta}(\tau',\tau)}^{\text{drift}} \dot{\xi}^{\beta}(\tau)$$

$$+ \underbrace{\int_{\tau}^{\tau'} d\tau'' \Delta B^{\alpha}{}_{\beta}(\tau',\tau'') a^{\beta}(\tau'')}_{\text{"higher memories"}}$$



"Unification" of higher memories [Grant, 2401.00047]

▶ Higher memories characterized by:

$$\underbrace{\Delta_{\alpha}}_{(n)}^{\alpha}{}_{\beta}(\tau',\tau) \equiv \frac{1}{n!} \int_{\tau}^{\tau'} \mathrm{d}\tau'' \ (\tau''-\tau)^n \Delta B^{\alpha}{}_{\beta}(\tau',\tau'')$$

dependence on initial acceleration, jerk, etc.

► Identities involving $\partial_{\tau} A^{\alpha}{}_{\beta}(\tau',\tau), \partial_{\tau} B^{\alpha}{}_{\beta}(\tau',\tau) \implies$

$$\underbrace{\underbrace{\mathscr{E}}_{\substack{(n)\\ \text{``moments''}}}^{\alpha} = \begin{cases} \Delta A^{\alpha}{}_{\beta}(\tau',\tau) & n = 0\\ \Delta B^{\alpha}{}_{\beta}(\tau',\tau) & n = 1\\ \underline{\Delta}\alpha^{\alpha}{}_{\beta}(\tau',\tau) & n \ge 2 \end{cases}$$
$$= -\frac{1}{n!} \int_{\tau}^{\tau'} \mathrm{d}\tau''(\tau''-\tau)^{n} \underbrace{B^{\alpha}{}_{\mu}(\tau',\tau'')R^{\mu}{}_{\dot{\gamma}\beta\dot{\gamma}}(\tau'')}_{\text{only piece needed}}$$

h ₁

10/27

Outline

I. Definition from observables

II. Asymptotically flat spacetimes

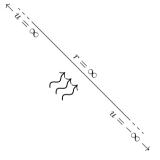
III. Applications to binary inspirals

IV. Conclusions and future work

Bondi(-Sachs) coordinates

$$g_{uu} = -1 + \frac{2m}{r} + O(1/r^2), \qquad g_{ur} = -1 + O(1/r^2)$$
$$g_{ui} = -\frac{1}{2}\mathscr{D}^j C_{ij} + \frac{1}{r} \left(\frac{2}{3}N_i + \cdots\right) + O(1/r^2),$$
$$g_{ij} = r^2 \left\{ [1 + O(1/r^2)]h_{ij} + \frac{1}{r} \left(C_{ij} + \frac{1}{r^2} \sum_{n=0}^{\infty} \frac{1}{r^n} \underset{(n)}{\mathcal{E}}_{(n)} ij\right) \right\}$$

- ▶ h_{ij} , \mathcal{D}_i metric & connection on sphere
- ▶ Shear C_{ij} (waveform), "higher Bondi aspects" $\mathcal{E}_{(n)}_{(n)}_{(n)}$
- \blacktriangleright m, Nⁱ: mass and angular momentum aspect
- ▶ $N_{ij} = \partial_u C_{ij}$: news, indicates presence of radiation
- ▶ $m, N^i, \underset{(n)}{\mathcal{E}}_{(n)ij}$: properties of source (essentially Re[ψ_2], ψ_1, ψ_0^n)



Asymptotic form of curve deviation

► Curvature at leading order:

$$R^i{}_{uju} = -\frac{1}{2r}\partial_u N^i{}_j + O(1/r^2)$$

► For asymptotic observers w/ $\dot{\gamma}^a = (\partial_u)^a + O(1/r)$, moments given by:

$$\mathcal{E}_{(n)}^{i}{}_{j}(u',u) = \frac{1}{2r} \left[(n+1) \mathcal{N}_{(n)}^{i}{}_{j}(u',u;u) - (u'-u) \left\{ \begin{array}{cc} 0 & n=0\\ \\ \mathcal{N}_{(n-1)}^{i}{}_{j}(u',u;u) & n>0 \end{array} \right] + O(1/r^{2}) \right]$$

where "moments of news" given by

$$\mathcal{N}^{i}_{\scriptscriptstyle (n)}{}^{i}{}_{j}(u,u';\tilde{u}) \equiv \frac{1}{n!} \int_{u}^{u'} \mathrm{d}u'' \, (u''-\tilde{u})^{n} N^{i}{}_{j}(u'')$$

Two useful notions of moments

$$\mathcal{N}_{(n)}^{i}{}_{j}(u', u; \tilde{u}) \equiv \frac{1}{n!} \int_{u}^{u'} \mathrm{d}u'' \, (u'' - \tilde{u})^{n} N^{i}{}_{j}(u'')$$

"Mellin" moments (original approach)

 \blacktriangleright Use $\tilde{u} = u$:

$$\widetilde{\mathcal{N}}^{i}_{\scriptscriptstyle (n)}_{\scriptscriptstyle (n)}(u',u) \equiv \mathcal{N}^{i}_{\scriptscriptstyle (n)}_{\scriptscriptstyle (n)}(u',u;u)$$

- Directly related to observables
- For u = 0, $u' = \infty$, related to Mellin transform:

$$\mathcal{M}{f}(n) \equiv \int_0^\infty u^{n-1} f(u) \mathrm{d}u$$

"Cauchy" moments (this talk)

▶ Use $\tilde{u} = u'$, with a sign change:

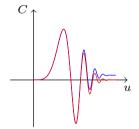
$$\mathcal{N}^{i}_{\scriptscriptstyle (n)}(u',u) \equiv (-1)^{n} \mathcal{N}^{i}_{\scriptscriptstyle (n)}(u',u;u')$$

 Related to Cauchy's formula for repeated integration:

$$\underset{\scriptscriptstyle (n)}{\overset{\mathcal{N}^i}{\underset{\scriptscriptstyle (n)}{\sum}}}_j(u',u) = \int_u^{u'} \mathrm{d} u'' \underset{\scriptscriptstyle (n-1)}{\overset{\mathcal{N}^i}{\underset{\scriptscriptstyle (n-1)}{\sum}}}^i_j(u'',u)$$

Computation of the moments

- Given a full waveform C_{ij} , one can easily compute these moments by integration
- ▶ Unfortunately, we do not have a "full" waveform:
 - Any approximation scheme (PN, self-force, etc.) only valid up to some order
 - In NR one often *extrapolates* signals at finite radius to infinity (CCE has mostly fixed this)
 - \implies Moments computed directly are inaccurate!
- ► Fortunately, relationships exist b/w these moments and C_{ij} , m, N^i , $\mathcal{E}_{(n)}ij$, providing
 - Consistency checks for "exact" waveforms
 - Corrections to approximate waveforms



Schematic form of evolution equations

▶ Define "electric" metric functions:

$$Q_0 \equiv m, \qquad Q_1 \equiv \mathscr{D}_i N^i, \qquad Q_{n+2} \equiv \mathscr{D}^i \mathscr{D}^j \underset{(n)}{\mathcal{E}}_{ij}$$

(omit magnetic versions for simplicity)

• Evolution equations take the following form:

$$\dot{Q}_0 = \frac{1}{4} \mathscr{D}^i \mathscr{D}^j N_{ij} - \mathcal{F}_0, \qquad \dot{Q}_n = \mathcal{D}_n Q_{n-1} - \mathcal{F}_n - \mathcal{G}_n$$

where

- $\triangleright \mathcal{D}_n$: differential operator on sphere
- \triangleright \mathcal{F}_n : nonlinear "flux" term, depends on N_{ij} (vanishes in nonradiative regions)
- ▶ \mathcal{G}_n : nonlinear "pseudoflux" term, does *not* vanish in nonradiative regions (only exists for $n \ge 2$)

Construction of "charges"

$$\dot{Q}_0 = \frac{1}{4} \mathscr{D}^i \mathscr{D}^j N_{ij} - \mathcal{F}_0, \qquad \dot{Q}_n = \mathcal{D}_n Q_{n-1} - \mathcal{F}_n - \mathcal{G}_n$$

▶ Note: \dot{Q}_0 vanishes when $N_{ij} = 0$; call such quantities "charges"

►
$$Q_{n\geq 1}$$
 not charges, as $Q_{n-1} \neq 0$ when $N_{ij} = 0$
(and $\mathcal{G}_n \neq 0$ when $N_{ij} = 0$ for $n \geq 2$)

▶ Can be modified to form charges, however (*not* unique!):

$$\tilde{Q}_n(u;\tilde{u}) \equiv Q_n(u) + \sum_{m=0}^{n-1} \frac{(\tilde{u}-u)^{n-m}}{(n-m)!} \mathcal{D}_n \cdots \mathcal{D}_{m+1} Q_m(u) + \underbrace{(\cdots)}_{\text{constructed from } \mathcal{G}_{2 \le m \le n}}$$

Relationship to moments

 \blacktriangleright Zeroth moment: integrate Q_0 evolution equation:

$$\frac{1}{4} \mathscr{D}^{i} \mathscr{D}^{j} \mathcal{N}_{ij}(u', u) = Q_{0}(u') - Q_{0}(u) + \int_{u}^{u'} \mathrm{d}u'' \mathcal{F}_{0}(u'')$$

▶ For *n*th moment use \tilde{Q}_n (flux has old and new terms)

$$\frac{1}{4}\mathcal{D}_{n}\cdots\mathcal{D}_{1}\mathscr{D}^{i}\mathscr{D}^{j}\underset{(n)}{\mathcal{N}}_{ij}(u',u) = \tilde{Q}_{n}(u';u') - \tilde{Q}_{n}(u;u') + \int_{u}^{constructed from \mathcal{G}_{n}} + \int_{u}^{u'} \mathrm{d}u'' \left[\mathcal{F}_{n}(u'') + \overbrace{(\cdots)}^{u'}\right] + \int_{u}^{u'} \mathrm{d}u'' \underbrace{(\cdots)}_{integrals from lower orders}$$

Example: drift memory/first moment

► Modified charge:

$$\tilde{Q}_1(u;\tilde{u}) \equiv Q_1(u) + (\tilde{u} - u)\mathcal{D}_1 Q_0(u)$$

Expression for "electric" first moment, the c.o.m. memory [Nichols, 1807.08767]

$$\frac{1}{4}\mathcal{D}_{1}\mathscr{D}^{i}\mathscr{D}^{j}\mathcal{N}_{(1)}{}_{ij}(u',u) = \tilde{Q}_{1}(u';u') - \tilde{Q}_{1}(u;u') + \int_{u}^{u'} \mathrm{d}u \ \mathcal{F}_{1}(u'') + \int_{u}^{u'} \mathrm{d}u''' \int_{u}^{u''} \mathrm{d}u''' \ \mathcal{D}_{1}\mathcal{F}_{0}(u''')$$

Spin memory: "magnetic" first moment [Pasterski et al., 1502.06120]

$$\frac{1}{4}\mathcal{D}_{1}\mathscr{D}^{i}\mathscr{D}^{j}({}^{*}\mathcal{N}_{(1)})_{ij}(u',u) = \tilde{Q}_{1}^{*}(u';u') - \tilde{Q}_{1}^{*}(u;u') + \int_{u}^{u'} \mathrm{d}u \ \mathcal{F}_{1}^{*}(u'')$$

Contribution to shear

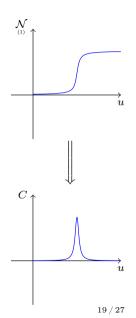
▶ Current detectors measure *shear*, not moments of news!

▶ From moments, can recover shear (up to constant):

$$C_{ij}(u') - C_{ij}(u) = \frac{\partial^n}{\partial u'^n} \mathcal{N}_{(n)}_{ij}(u', u)$$

(note: only this simple for the Cauchy moments!)

- Previous slides: contributions to moments of news
 ⇒ parts of shear arising from these contributions
- ▶ Nonlinear contributions from (e.g.) \mathcal{F}_n give a signal that can be detected



Outline

I. Definition from observables

II. Asymptotically flat spacetimes

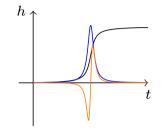
III. Applications to binary inspirals

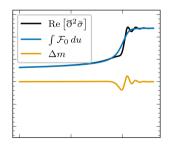
IV. Conclusions and future work

Numerical relativity [Grant & Mitman, 2312.02295]

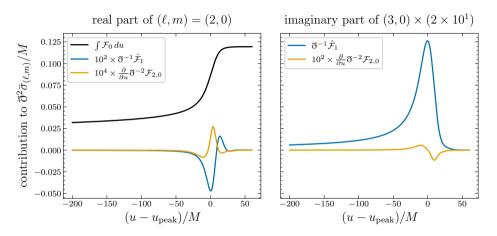
- ▶ Considered equal-mass, quasicircular binary
- \blacktriangleright With CCE, *full* waveform available
- Only m = 0, should be mostly non-oscillatory
- ► Can test:
 - Are shapes of the different flux contributions what we would expect?
 - ► Are the charges or fluxes more important?
- ▶ Note: to translate from Newman-Penrose:

$$\sigma \sim C_{ij}, \quad \psi_1 \sim Q_1, \quad \psi_0 \sim Q_2, \quad \eth \sim \mathscr{D}_i$$



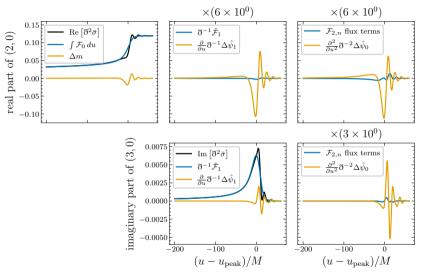


Shape during merger



Some flux contributions have expected shapes, but not allSpoiled by ringdown?

Charge vs. flux



• Charge often larger than flux

Post-Newtonian theory [Siddhant, Grant, & Nichols; 2403.13907]

- ► Advantages/disadvantages relative to NR:
 - + Completely analytic
 - + Can consider wider set of parameters (unequal masses, etc.)
 - + PN scaling proxy for "detectability"
 - Valid only for inspiral (memory mostly at merger)
 - Charges harder to compute
- ▶ Also study $m \neq 0$, "oscillatory" memory
 - ▶ Not typically considered to be memories
 - Still sourced by flux/pseudo-flux terms as non-oscillatory effects

▶ "Alternative" way to understand nonlinearities in PN multipole moments:

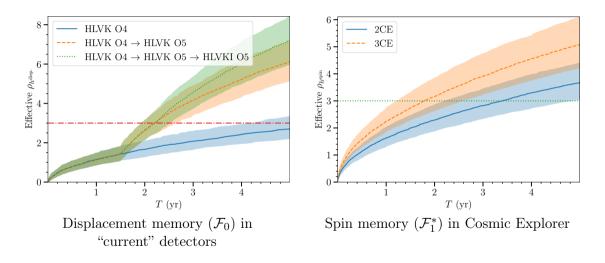
Post-Newtonian orders

Flux or	Non-oscillatory $(m = 0)$		Oscillatory $(m \neq 0)$	
pseudo-flux	Leading modes	PN order	Leading modes	PN order
\mathcal{F}_0	l = 2, 4	0	$l = 4 \ (m = \pm 4)$	2.5
\mathcal{F}_1	l = 2, 4	5	$l = 3, 5, 7 \ (m = \ldots)$	3
\mathcal{F}_1^*	l = 3	2.5	$l=3~(m=\pm 2)$	2.5
\mathcal{F}_2	l = 2, 4, 6, 8	10	$l = 2, 4, 8 \ (m = \ldots)$	5
\mathcal{F}_2^*	l=3,5,7	10	$l = 3, 5, 7 \ (m = \ldots)$	5
\mathcal{G}_2	l = 2, 4	4	$l=2 \ (m=\pm 2)$	1.5
\mathcal{G}_2^*	l = 3	6.5	$l=2~(m=\pm 1)$	2

 $\blacktriangleright\,$ Except for displacement & spin, oscillatory effects far lower order

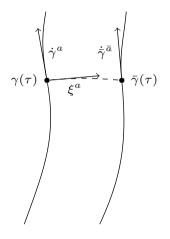
▶ Some effects have been considered for detectability, others plausible?

The one slide on detectability [Grant & Nichols, 2210.16266]



Conclusions

- Higher memories: more general effects that idealized observers can measure
- ▶ Like the usual (displacement) memory, they
 - Probe nonlinearities in GW propagation
 - ▶ (Can) arise as non-oscillatory parts of the GW signal
- ▶ Numerical & post-Newtonian binary inspirals:
 - Suspicion confirmed that these effects are small
 - ▶ Cosmic Explorer may see leading, "spin" memory



Future work

▶ Other theories in which to consider these effects:

- Electromagnetism, classical Yang-Mills?
- ▶ Modified gravity: can they tell us something normal memory cannot?
- ▶ Will some of these effects be detectable?
 - ▶ Non-oscillatory effects very small
 - Oscillatory effects need to be dug out of much larger oscillatory signal?