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Memory effect

▶ Gravitational wave (displacement) memory: change in
separation of initially comoving, freely falling observers
[Zel’dovich & Polnarev, 1974]

▶ Appears as DC offset for a GW detector
=⇒ fundamentally different type of signal!
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Origin of the memory

▶ Quadrupole formula:

hij =
2Q̈ij

r
+O(1/r2) =⇒ when is ∆Q̈ij ̸= 0?

▶ Qij ∼ mxixj & ẍi = 0 at late times, so

∆Q̈ij ∼ m∆ [vivj ] =⇒ when vi changes!

▶ Note: applies to unbound systems w/ particles flying off to infinity
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Memories and “strong gravity”

▶ Bound systems: “particles flying off to infinity” are
gravitational waves

▶ Source is quadratic in the field:

Tαβ ∼ ⟨ḣαγ ḣγβ⟩ =⇒ ∆h(u) ∼ r
∫ u

−∞
|ḣ|2

(with h ≡ h+ − ih× ∼ 1/r)

▶ Probes nonlinearity in propagation regime

[Christodoulou, 1991], [Blanchet & Damour, 1992 (1990)], [Thorne, 1992] 3 / 27



Higher memories
▶ Two “simple” generalizations:

▶ Relax assumptions: initially comoving or freely falling
▶ Consider other properties (e.g., final relative velocity)

▶ Additional, memory-like effects (drift = spin + c.o.m.):(
ξf
ξ̇f

)
=

(
ξi +∆τ ξ̇i

ξ̇i

)
+

(
displacement drift

velocity kick

)(
ξi
ξ̇i

)
+ (· · · ) +

[
“higher memories”
(from acceleration)

]
▶ Appear as different types

of non-oscillatory GW features

▶ Probe “subleading” nonlinearities in
propagation of gravitational waves
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Outline

I. Definition from observables

II. Asymptotically flat spacetimes

III. Applications to binary inspirals

IV. Conclusions and future work

Not in this talk: detectability (except one slide), symmetries, soft theorems. . .



Geodesic deviation

▶ Two observers, following γ and γ̄, w/
four-velocities γ̇a and ˙̄γā

▶ Separation vector ξa tangent to unique geodesic
between γ(τ) and γ̄(τ)

▶ Geodesic deviation equation:

ξ̈a = −Ra
cbdγ̇

cγ̇d︸ ︷︷ ︸
≡Ra

γ̇bγ̇

ξb +O(ξ, ξ̇)2

γ(τ) γ̄(τ)
ξa

γ̇a ˙̄γā

For an excellent review, see [Vines, 2014] 5 / 27



General solution

▶ Recall: cannot add/subtract tensors at different points
=⇒ cannot solve tensor ODEs

▶ Parallel-transported tetrad {eα} =⇒ scalar ODE:

Deα
dτ

= 0 =⇒ ξ̈α(τ) = −Rα
γ̇βγ̇(τ)ξ

β(τ) +O(ξ, ξ̇)2

▶ General solution (linear order):

ξµ(τ ′) = Aµ
ν(τ

′, τ)ξν(τ) +Bµ
ν(τ

′, τ)ξ̇ν(τ)

where A,B solve (w/ appropriate BC’s)

∂2τ ′U
µ
ν(τ

′, τ) = −Rµ
γ̇ργ̇(τ

′)Uρ
ν(τ

′, τ)
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“Geodesic” memory effects

▶ Matrix form of solution:[
ξ(τ ′)
ξ̇(τ ′)

]
=

[
A(τ ′, τ) B(τ ′, τ)
∂τ ′A(τ ′, τ) ∂τ ′B(τ ′, τ)

] [
ξ(τ)

ξ̇(τ)

]
▶ Comparing to memory effects:(

displacement drift
velocity kick

)
=

(
∆A ∆B
∂τ ′∆A ∂τ ′∆B

)

where

{
∆A(τ ′, τ) = A(τ ′, τ)− I,
∆B(τ ′, τ) = B(τ ′, τ)−∆τI
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The addition of acceleration: “Non-geodesic” deviation

▶ If γ̄ accelerated, geodesic deviation modified:

ξ̈a = −Ra
γ̇bγ̇ξ

b +

“relative acceleration” aa︷ ︸︸ ︷
gaā︸︷︷︸

parallel transport map

¨̄γā+O(ξ, ξ̇,a)2,

▶ Solution on our tetrad (linear order):

ξ̈α(τ) = −Rα
γ̇βγ̇(τ)ξ

β(τ) + aα(τ)ww�
ξα(τ ′) = Aα

β(τ
′, τ)ξβ(τ) +Bα

β(τ
′, τ)ξ̇β(τ)

+

∫ τ ′

τ
dτ ′′ Bα

β(τ
′, τ ′′)aβ(τ ′′)

γ(τ) γ̄(τ)
ξa

γ̇a ˙̄γā
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Curve deviation

▶ Part of solution is an uninteresting, “kinematic” piece:

ξ̈αflat(τ) = aα(τ) =⇒


ξαflat(τ

′) = ξα(τ) + (τ ′ − τ)ξ̇α(τ)

+

∫ τ ′

τ
dτ ′′(τ ′ − τ ′′)aα(τ ′′)

▶ Subtracting off yields curve deviation observable:

∆ξα(τ ′, τ) ≡ ξα(τ ′)− ξαflat(τ
′)

=

displacement︷ ︸︸ ︷
∆Aα

β(τ
′, τ) ξβ(τ) +

drift︷ ︸︸ ︷
∆Bα

β(τ
′, τ) ξ̇β(τ)

+

∫ τ ′

τ
dτ ′′ ∆Bα

β(τ
′, τ ′′)aβ(τ ′′)︸ ︷︷ ︸

“higher memories”

γ

γ̄

ξµ(τ0)

ξµ(τ1)

ξµ
flat

(τ1)

γ̇µ
γ̇µ+ξ̇µ(τ0)

9 / 27



“Unification” of higher memories [Grant, 2401.00047]
▶ Higher memories characterized by:

∆α
(n)

α
β(τ

′, τ)︸ ︷︷ ︸
dependence on initial
acceleration, jerk, etc.

≡ 1

n!

∫ τ ′

τ
dτ ′′ (τ ′′ − τ)n∆Bα

β(τ
′, τ ′′)

▶ Identities involving ∂τAα
β(τ

′, τ), ∂τBα
β(τ

′, τ) =⇒

E
(n)

α
β(τ

′, τ)︸ ︷︷ ︸
“moments”

=


∆Aα

β(τ
′, τ) n = 0

∆Bα
β(τ

′, τ) n = 1

∆α
(n−2)

α
β(τ

′, τ) n ≥ 2

= − 1

n!

∫ τ ′

τ
dτ ′′(τ ′′ − τ)nBα

µ(τ
′, τ ′′)Rµ

γ̇βγ̇(τ
′′)︸ ︷︷ ︸

only piece needed
for computation
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Outline

I. Definition from observables

II. Asymptotically flat spacetimes

III. Applications to binary inspirals

IV. Conclusions and future work



Bondi(-Sachs) coordinates

guu = −1 + 2m

r
+O(1/r2), gur = −1 +O(1/r2)

gui = −
1

2
DjCij +

1

r

(
2

3
Ni + · · ·

)
+O(1/r2),

gij = r2

{
[1 +O(1/r2)]hij +

1

r

(
Cij +

1

r2

∞∑
n=0

1

rn
E
(n)

ij

)}

▶ hij , Di metric & connection on sphere

▶ Shear Cij (waveform), “higher Bondi aspects” E
(n)

ij

▶ m, N i: mass and angular momentum aspect

▶ Nij = ∂uCij : news, indicates presence of radiation

▶ m, N i, E
(n)

ij : properties of source (essentially Re[ψ2], ψ1, ψn
0 )

u
= −∞

→

r
=∞

←
u
=∞

;;
;
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Asymptotic form of curve deviation
▶ Curvature at leading order:

Ri
uju = − 1

2r
∂uN

i
j +O(1/r2)

▶ For asymptotic observers w/ γ̇a = (∂u)
a +O(1/r), moments given by:

E
(n)

i
j(u

′, u) =
1

2r

(n+ 1)N
(n)

i
j(u

′, u;u)− (u′ − u)

 0 n = 0

N
(n−1)

i
j(u

′, u;u) n > 0


+O(1/r2)

where “moments of news” given by

N
(n)

i
j(u, u

′; ũ) ≡ 1

n!

∫ u′

u
du′′ (u′′ − ũ)nN i

j(u
′′)
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Two useful notions of moments

N
(n)

i
j(u

′, u; ũ) ≡ 1

n!

∫ u′

u
du′′ (u′′ − ũ)nN i

j(u
′′)

“Mellin” moments (original approach)
▶ Use ũ = u:

Ñ
(n)

i
j(u

′, u) ≡ N
(n)

i
j(u

′, u;u)

▶ Directly related to observables
▶ For u = 0, u′ =∞, related to Mellin

transform:

M{f}(n) ≡
∫ ∞

0
un−1f(u)du

“Cauchy” moments (this talk)
▶ Use ũ = u′, with a sign change:

N
(n)

i
j(u

′, u) ≡ (−1)nN
(n)

i
j(u

′, u;u′)

▶ Related to Cauchy’s formula for
repeated integration:

N
(n)

i
j(u

′, u) =
∫ u′

u
du′′ N

(n−1)

i
j(u

′′, u)
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Computation of the moments

▶ Given a full waveform Cij , one can easily compute
these moments by integration

▶ Unfortunately, we do not have a “full” waveform:
▶ Any approximation scheme (PN, self-force, etc.)

only valid up to some order
▶ In NR one often extrapolates signals at finite radius

to infinity (CCE has mostly fixed this)
=⇒ Moments computed directly are inaccurate!

▶ Fortunately, relationships exist b/w these moments
and Cij , m, N i, E

(n)
ij , providing

▶ Consistency checks for “exact” waveforms
▶ Corrections to approximate waveforms

C

u
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Schematic form of evolution equations

▶ Define “electric” metric functions:

Q0 ≡ m, Q1 ≡ DiN
i, Qn+2 ≡ D iDj E

(n)
ij

(omit magnetic versions for simplicity)
▶ Evolution equations take the following form:

Q̇0 =
1

4
D iDjNij −F0, Q̇n = DnQn−1 −Fn − Gn

where
▶ Dn: differential operator on sphere
▶ Fn: nonlinear “flux” term, depends on Nij (vanishes in nonradiative regions)
▶ Gn: nonlinear “pseudoflux” term, does not vanish in nonradiative regions

(only exists for n ≥ 2)
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Construction of “charges”

Q̇0 =
1

4
D iDjNij −F0, Q̇n = DnQn−1 −Fn − Gn

▶ Note: Q̇0 vanishes when Nij = 0; call such quantities “charges”

▶ Qn≥1 not charges, as Qn−1 ̸= 0 when Nij = 0
(and Gn ̸= 0 when Nij = 0 for n ≥ 2)

▶ Can be modified to form charges, however (not unique!):

Q̃n(u; ũ) ≡ Qn(u) +

n−1∑
m=0

(ũ− u)n−m

(n−m)!
Dn · · · Dm+1Qm(u) + (· · · )︸ ︷︷ ︸

constructed from G2≤m≤n
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Relationship to moments

▶ Zeroth moment: integrate Q0 evolution equation:

1

4
D iDjN

(0)
ij(u

′, u) = Q0(u
′)−Q0(u) +

∫ u′

u
du′′ F0(u

′′)

▶ For nth moment use Q̃n (flux has old and new terms)

1

4
Dn · · · D1D

iDjN
(n)

ij(u
′, u) = Q̃n(u

′;u′)− Q̃n(u;u
′)

+

∫ u′

u
du′′

[
Fn(u

′′) +

constructed from Gn︷ ︸︸ ︷
(· · · )

]
+

∫ u′

u
du′′ (· · · )︸ ︷︷ ︸

integrals from lower orders
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Example: drift memory/first moment

▶ Modified charge:
Q̃1(u; ũ) ≡ Q1(u) + (ũ− u)D1Q0(u)

▶ Expression for “electric” first moment, the c.o.m. memory [Nichols, 1807.08767]

1

4
D1D

iDjN
(1)

ij(u
′, u) = Q̃1(u

′;u′)− Q̃1(u;u
′) +

∫ u′

u
du F1(u

′′)

+

∫ u′

u
du′′

∫ u′′

u
du′′′ D1F0(u

′′′)

▶ Spin memory: “magnetic” first moment [Pasterski et al., 1502.06120]

1

4
D1D

iDj(∗N
(1)
)ij(u

′, u) = Q̃∗
1(u

′;u′)− Q̃∗
1(u;u

′) +
∫ u′

u
du F∗

1 (u
′′)
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Contribution to shear

▶ Current detectors measure shear, not moments of news!

▶ From moments, can recover shear (up to constant):

Cij(u
′)− Cij(u) =

∂n

∂u′n
N
(n)

ij(u
′, u)

(note: only this simple for the Cauchy moments!)

▶ Previous slides: contributions to moments of news
=⇒ parts of shear arising from these contributions

▶ Nonlinear contributions from (e.g.) Fn give a
signal that can be detected

N
(1)

u

wwww�
C

u
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Outline

I. Definition from observables

II. Asymptotically flat spacetimes

III. Applications to binary inspirals
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Numerical relativity [Grant & Mitman, 2312.02295]

▶ Considered equal-mass, quasicircular binary

▶ With CCE, full waveform available

▶ Only m = 0, should be mostly non-oscillatory

▶ Can test:
▶ Are shapes of the different flux

contributions what we would expect?
▶ Are the charges or fluxes more important?

▶ Note: to translate from Newman-Penrose:

σ ∼ Cij , ψ1 ∼ Q1, ψ0 ∼ Q2, ð ∼ Di

h

t
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Shape during merger
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▶ Some flux contributions have expected shapes, but not all
▶ Spoiled by ringdown?
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Charge vs. flux
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▶ Charge often larger than flux
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Post-Newtonian theory [Siddhant, Grant, & Nichols; 2403.13907]
▶ Advantages/disadvantages relative to NR:

+ Completely analytic
+ Can consider wider set of parameters (unequal masses, etc.)
+ PN scaling proxy for “detectability”
− Valid only for inspiral (memory mostly at merger)
− Charges harder to compute

▶ Also study m ̸= 0, “oscillatory” memory
▶ Not typically considered to be memories
▶ Still sourced by flux/pseudo-flux terms as non-oscillatory effects

▶ “Alternative” way to understand nonlinearities in PN multipole moments:

“source”︷ ︸︸ ︷
IL, JL =⇒

“canonical”︷ ︸︸ ︷
ML, SL =⇒

“radiative”︷ ︸︸ ︷
UL, VL︸ ︷︷ ︸

higher memories appear here
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Post-Newtonian orders

Flux or Non-oscillatory (m = 0) Oscillatory (m ̸= 0)
pseudo-flux Leading modes PN order Leading modes PN order
F0 l = 2, 4 0 l = 4 (m = ±4) 2.5

F1 l = 2, 4 5 l = 3, 5, 7 (m = . . .) 3
F∗
1 l = 3 2.5 l = 3 (m = ±2) 2.5

F2 l = 2, 4, 6, 8 10 l = 2, 4, 8 (m = . . .) 5
F∗
2 l = 3, 5, 7 10 l = 3, 5, 7 (m = . . .) 5
G2 l = 2, 4 4 l = 2 (m = ±2) 1.5
G∗2 l = 3 6.5 l = 2 (m = ±1) 2

▶ Except for displacement & spin, oscillatory effects far lower order
▶ Some effects have been considered for detectability, others plausible?
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The one slide on detectability [Grant & Nichols, 2210.16266]
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Conclusions

▶ Higher memories: more general effects that
idealized observers can measure

▶ Like the usual (displacement) memory, they

▶ Probe nonlinearities in GW propagation
▶ (Can) arise as non-oscillatory parts of the GW signal

▶ Numerical & post-Newtonian binary inspirals:

▶ Suspicion confirmed that these effects are small
▶ Cosmic Explorer may see leading, “spin” memory

γ(τ) γ̄(τ)
ξa

γ̇a ˙̄γā
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Future work

▶ Other theories in which to consider these effects:

▶ Electromagnetism, classical Yang-Mills?
▶ Modified gravity: can they tell us something normal memory cannot?

▶ Will some of these effects be detectable?
▶ Non-oscillatory effects very small
▶ Oscillatory effects need to be dug out of much larger oscillatory signal?
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