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Memory effect

» Gravitational wave (displacement) memory: change in
separation of initially comoving, freely falling observers
[Zel’dovich & Polnarev, 1974]

» Appears as DC offset for a GW detector
= fundamentally different type of signal!
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Origin of the memory

» Quadrupole formula:

hij = +0(1/r?) = when is AQ;; # 07

2Qi
,
> Qi ~ mz;x; & & = 0 at late times, so

AQU ~ mA [v;v;] = when v; changes!

» Note: applies to unbound systems w/ particles flying off to infinity

e
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Memories and “strong gravity”

» Bound systems: “particles flying off to infinity” are

gravitational waves H fJJ

» Source is quadratic in the field:

Top ~ (hayh?g) = Ah(u)w/" A2 ® e

(with h = hy — ihy ~ 1/1) S L

» Probes nonlinearity in propagation regime

[Christodoulou, 1991], [Blanchet & Damour, 1992 (1990)], [Thorne, 1992] 3/27



Higher memories

» Two “simple”’ generalizations:
> Relax assumptions: initially comoving or
» Consider other properties (e.g., final relative velocity)

» Additional, memory-like effects (drift = spin + c.o.m.):

7\ _ (& T AT 51 displacement drift\ (§;
é f B 51 + velocity kick Ez
Y+ [ ]

» Appear as different types
of non-oscillatory GW features

» Probe “subleading” nonlinearities in

propagation of gravitational waves
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Outline

I. Definition from observables

I1. Asymptotically flat spacetimes

I1I. Applications to binary inspirals

IV. Conclusions and future work

Not in this talk: detectability (except one slide), symmetries, soft theorems. ..




Geodesic deviation

» Two observers, following v and 7, w/
four-velocities 4* and 42

> Separation vector £ tangent to unique geodesic
between v(7) and (1)

> Geodesic deviation equation:

£ = — R%apa°49 € + O(€, €)?
——

= a ., .
= R%by

For an excellent review, see [Vines, 2014]
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General solution

&M () A AEM (11)

» Recall: cannot add/subtract tensors at different points
= cannot solve tensor ODEs

» Parallel-transported tetrad {e,} = scalar ODE:

o —0 = £%() = —R%p3(1)E (1) + 0(€, &)

» General solution (linear order):
i(r') = A (7, 7)€" (r) + B¥, (7, 7)€" (1)
where A, B solve (w/ appropriate BC’s)

FH+E€H (7o)

O2UM (7, 7) = —RVs s (7)UP, (7', 7) iz
(7o)
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“Geodesic” memory effects

& (1)

» Matrix form of solution:

Fm] _ [ A7) BT } [sm]

&) [0 A(r,T) 0nB(77)] [€(7)
» Comparing to memory effects:
Y
displacement drift) [ AA AB
velocity kick )  \0~.AA 0.AB

AA(T,7)=A(",7) -1,
where , ,

AB(7',7)=B(1',7) — ATl _

s A+ (10)
§"(70)
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The addition of acceleration: “Non-geodesic” deviation

> If 4 accelerated, geodesic deviation modified:

“relative acceleration” a®

é'-'a = _Ra"ybﬁgb + gad %/& +O(£7 é’ 0)2,
~~~

parallel transport map

» Solution on our tetrad (linear order):

€(1) = —=R%5(1)§%(7) + a®(7)

I

(1) = A%(r', )€ (1) + BY(r', 7)€% (1)

/

+ / dr” Bes(7',7")aP (7")
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Curve deviation

» Part of solution is an uninteresting, “kinematic” piece:

._ (') = €2(7) + (7' = 1) (r)
Eu(r) = a%(r) = :

-
+ / dT”(T/ _ T”)aa(']—//)
-
» Subtracting off yields curve deviation observable:

Aéa (T,’ T) = ga (T,) - ggat (T,)
displacement drift

—_——f —_—~.
= AA%(7',7) €%(r) + AB%(7',7) €°(7)

’

+/ dr” ABO‘B(T/,T”)CL’B(T”)

& (7o)

Vv
“higher memories”
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“Unification” of higher memories [Grant, 2401.00047|

» Higher memories characterized by:

I
A(%QB(T’,T) = n'/T dr" (7" = 7)"ABYs(7', ")
—_—

dependence on initial h
acceleration, jerk, etc.

» Identities involving 9; A%s(7',7),0; Bs3(7',7) =

AA%g(T,7) n=0

(gaﬁ(’]—/”r) = ABaﬁ(TI,T) n:1 t
L,_/ n 2 2
“moments”
17

— _ﬁ dT//(T// _ T)n Bau(7/7 T//)Ruf'yﬂ"y (7_//2

-
only piece needed

for computation
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Outline

II. Asymptotically flat spacetimes



Bondi(-Sachs) coordinates
guu= -1+ L O(1)),  gur=—140(/7)

r\3
1 1 <1
gij =1° {[1 +O(1/r)]hij + — <Cij t3 > Wf{)ij) }
n=0

1 . 1 /2
gui:—i.@jCij‘i‘ (Nz‘-i-"‘)"‘O(l/TQ)’

hij, 9; metric & connection on sphere

Shear Cj; (waveform), “higher Bondi aspects” & j;

(n)

m, N*: mass and angular momentum aspect

N;j = 0,C;j: news, indicates presence of radiation

vV v.v v v

m, N, (S)ij: properties of source (essentially Re[ts], ¥1, ¥¢)
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Asymptotic form of curve deviation

» Curvature at leading order:
i 1 i 2

» For asymptotic observers w/ 4% = (9,)* + O(1/r), moments given by:

) 1 ) 0 =
E (v, u)=— |(n+ DN (v, wu) — (v —u .
(n) 3 u) 2r ( )(n> i )= ) (/\/nlj(u/,u;u) n>0

+0(1/r?)

where “moments of news” given by
. 1 v .
(/}l/;Zj(u,u’; ) = n‘/ du” (u" — @)"N*;j(u")
N u
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Two useful notions of moments

Nij(u',u' w) 1

) ’ n! /.,

“Mellin” moments (original approach)

du’ (u// _ ﬁ)nNij (u//)

“Cauchy” moments (this talk)

» Use u = u:

ﬁ/ij(u',u) E.(/\/)'ij(u',u;u)

(n)

» Directly related to observables

» For u =0, v/ = oo, related to Mellin

transform:

M{f}(n) = /0 T (u)du

» Use u = u/, with a sign change:

N u) = (=1)" N (' up o)

(n) (n)
> Related to Cauchy’s formula for
repeated integration:

/\/ij(u',u)—/ du’ N ij(u",u)

(n) (n—1)
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Computation of the moments

» Given a full waveform Cj;, one can easily compute
these moments by integration

» Unfortunately, we do not have a “full” waveform:

> Any approximation scheme (PN, self-force, etc.)
only valid up to some order

> In NR one often extrapolates signals at finite radius
to infinity (CCE has mostly fixed this)

= Moments computed directly are inaccurate!

» Fortunately, relationships exist b/w these moments
and Cj;, m, N*, (S>Z~j, providing

» Consistency checks for “exact” waveforms
» Corrections to approximate waveforms

=
y

14 /27



Schematic form of evolution equations

» Define “electric” metric functions:
QO =m, Ql = ‘@’LNla Qn+2 = -@l-@](g)l]

(omit magnetic versions for simplicity)

» Evolution equations take the following form:

. 1 .. .
Qo = Zglngij - Fo, Qn =DpQn-1—Fn— Gy

where

» D, differential operator on sphere

»> F,: nonlinear “flux” term, depends on N;; (vanishes in nonradiative regions)

» G,: nonlinear “pseudoflux” term, does not vanish in nonradiative regions
(only exists for n > 2)
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Construction of “charges”

. 1 . . .
QOZZQZ-@]Nij_fO> Qn:’Dnanl_]rn_gn

> Note: Qg vanishes when N;; = 0; call such quantities “charges”

> anl not Charges, as anl # 0 When Nl] =0
(and G,, # 0 when N;; = 0 for n > 2)

» Can be modified to form charges, however (not unique!):

n—1 . n—m
Qn(u,ﬂ) = Qn(u) =+ mZ::O %Dn o 'Dm+1Qm(u) +u

constructed from Go<ym<p
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Relationship to moments

> Zeroth moment: integrate (Jy evolution equation:

/

1 ) / / !/ “ " "
Z@Z@J{é&j(u ;u) = Qo(u') — Qo(u) +/ du” Fo(u")

u
» For nth moment use Q,, (flux has old and new terms)
1 o - -
ZDH . 'D1@Z@7.</\/)’ij(u/, u) = Qn(u/;u') — Qn(u;u)
" constructed from G,

du” [Fp(u”) + m

/

[
U SN—~—

integrals from lower orders

u/

_.|_

=~

17 /27



Example: drift memory /first moment

» Modified charge: .
Q1(u;0) = Q1(u) + (@ — u)D1Qo(u)
» Expression for “electric” first moment, the c.o.m. memory [Nichols, 1807.08767]

u/

%'Dl.@i@j{}{ij(u/, u) = Ql(u’; u') — Ql(u; U,) + / du .7:1 ('U,//>

u
u/ ,u//
+ / du” / du”" D1 Fo(u’)
JUu JUu

» Spin memory: “magnetic” first moment [Pasterski et al., 1502.06120]

/

1 . u
IDIF PNl 0) = Qi) — Qs + [ du (W)
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Contribution to shear

» Current detectors measure shear, not moments of news! f
» From moments, can recover shear (up to constant): >
on
Cij (') = Cij(u) = 552 Nij (', u)
(note: only this simple for the Cauchy moments!) H
C

» Previous slides: contributions to moments of news

= parts of shear arising from these contributions jk

» Nonlinear contributions from (e.g.) F, give a
signal that can be detected u
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Outline

I1I. Applications to binary inspirals



Numerical relativity [Grant & Mitman, 2312.02295]

h
Considered equal-mass, quasicircular binary

With CCE, full waveform available

o~

| 4
>
» Only m = 0, should be mostly non-oscillatory w
>

Can test:

» Are shapes of the different flux F w .
— Re [0%]

contributions what we would expect? ] ]
» Are the charges or fluxes more important? y
- m -

» Note: to translate from Newman-Penrose:

o~Ci, YP1~Q1, Yo~Q2, O~ s 1
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Shape during merger
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» Some flux contributions have expected shapes, but not all

» Spoiled by ringdown?
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Charge vs. flux

real part of (2,0)
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—— Re [525} — 3 1A —— Fap, flux terms
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often larger than flux

(U — Upeak) /M

(u — Upear) /M
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Post-Newtonian theory [Siddhant, Grant, & Nichols; 2403.13907]

» Advantages/disadvantages relative to NR:
+ Completely analytic
+ Can consider wider set of parameters (unequal masses, etc.)
+ PN scaling proxy for “detectability”

Valid only for inspiral (memory mostly at merger)

— Charges harder to compute

» Also study m # 0, “oscillatory” memory

» Not typically considered to be memories
» Still sourced by flux/pseudo-flux terms as non-oscillatory effects

> “Alternative” way to understand nonlinearities in PN multipole moments:

“source” “canonical” “radiative”

—_— —— ——

IL,JL - AfL,Si - (IL,VE
Vv

higher memories appear here
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Post-Newtonian orders

Flux or Non-oscillatory (m = 0) Oscillatory (m # 0)
pseudo-flux  Leading modes PN order Leading modes PN order
To 1=2,4 0 =4 (m = +4) 2.5

Fi =24 5 1=3,5,7(m=...) 3

Fi =3 2.5 =3 (m=42) 2.5

Fa 1=2,4,6,8 10 [1=2,48(m=...) 5

Fy 1=3,5,7 10 1=3,5,7m=...) 5

Go =24 4 [=2(m=42) 1.5

G3 1=3 6.5 1=2 (m==+1) 2

» Except for displacement & spin, oscillatory effects far lower order

> Some effects have been considered for detectability, others plausible?
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The one slide on detectability [Grant & Nichols, 2210.16266]

Effective pjaisn

- (=2
| IR

[
PR R

—— HLVK 04

] -—-- HIVK 04 - HIVK 05

R
T (yr)
Displacement memory (Fp) in
“current” detectors

Effective ppspin

— 2CE
54 - 3CE -
o T
e = .’.,Ar.’..'. .....................................................
2_
14 2

y
0 S A AL B

2 3 4
T (yr)

Spin memory (F7) in Cosmic Explorer
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Conclusions

» Higher memories: more general effects that
idealized observers can measure
» Like the usual (displacement) memory, they

» Probe nonlinearities in GW propagation
> (Can) arise as non-oscillatory parts of the GW signal

» Numerical & post-Newtonian binary inspirals:

» Suspicion confirmed that these effects are small
» Cosmic Explorer may see leading, “spin” memory
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Future work

» Other theories in which to consider these effects:

» Electromagnetism, classical Yang-Mills?
» Modified gravity: can they tell us something normal memory cannot?

» Will some of these effects be detectable?

» Non-oscillatory effects very small
» Oscillatory effects need to be dug out of much larger oscillatory signal?
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